Comparative study on a newly-developed three-dimensional wind turbine wake model
نویسندگان
چکیده
منابع مشابه
CFD Wake Modelling with a BEM Wind Turbine Sub-Model
Modelling of wind farms using computational fluid dynamics (CFD) resolving the flow field around each wind turbine’s blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accu...
متن کاملEffects of Freestream Turbulence in a Model Wind Turbine Wake
The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at Re ∼ 7× 104. Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locat...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. The pr...
متن کاملStudy on the Wake of a Miniature Wind Turbine Using the Reynolds Stress Model
The Reynolds Stress Model (RSM) is adopted to simulate the wind turbine wake and the simulation results are compared with the wind tunnel test data, simulation results from the standard k-ε model and a modified k-ε model. RSM shows good performance in predicting the turbine wakes velocity, turbulence intensity and the kinetic shear stress, while the k-ε based models fail to predict either wakes...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2019
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2019.01.062